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ABSTRACT

A method of efficiently computing turbulent compressible flow over complex two-dimensional

configurations is presented. The method makes use of fully unstructured meshes throughout

the entire flow-field, thus enabling the treatment of arbitrarily complex geometries and the use

of adaptive meshing techniques throughout both viscous and inviscid regions of the flow-field.

Mesh generation is based on a locally mapped Delaunay technique in order to generate

unstructured meshes with highly-stretched elements in the viscous regions. The flow equations

are discretized using a finite-element Navier-Stokes solver, and rapid convergence to steady-

state is achieved using an unstructured multigrid algorithm. Turbulence modeling is performed

using an inexpensive algebraic model, implemented for use on unstructured and adaptive

meshes. Compressible turbulent flow solutions about multiple-element airfoil geometries are

computed and compared with experimental data.

This research was supported under the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Sci-
ence and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

Althoughunstructuredmeshtechniqueshavebeenemployedextensivelyin fieldssuchas
solidmodelingandcomputationalstructuralmechanicsfor manyyears,theirusein thefieldof
computationalfluid dynamics(CFD)constitutesarelativelyrecentphenomenon.This situation
is probablydueto thelargeoverheadsgenerallyincurredwith unstructuredmeshtechniques,
whichcanbecomeunacceptablewhencoupledwith the largecomputationalrequirementsof
manyCFDproblems.Theadvantagesof unstructuredmesheslie in theability theyaffordfor
flexiblydiscretizingarbitrarilycomplexgeometries,andin theeasewith whichtheylendthem-
selvesto adaptivemeshingtechniques,whichcanbe employedto accuratelyresolvecomplex
flows in anefficientmanner.In recentyears,muchprogresshasbeenmadein developing
moresophisticatedunstructuredmeshgenerationstrategiesfor computationalfluid dynamics
problems[1,2,3]aswell asin thedevelopmentof novelandefficientflow-solutionalgorithms
[4,5,6,7].However,muchof thisefforthasbeendirectedat two-andthree-dimensionalinvis-
cid flow problems.The solutionof high-Reynolds-numberviscousflows,whichareof much
greaterpracticalinterest,introducesadditionalcomplicationswith regardsto meshgeneration
andturbulencemodeling. Mostattemptsat solvingviscousflowsusingunstructuredmeshes
haveresortedto hybridstructured-unstructuredmeshes,wherea thinstructuredmeshis placed
in theboundary-layerandwakeregions,andanunstructuredmeshis employedin theregions
of inviscidflow [8,9]. This typeof compromise,however,limits theflexibilityof theoriginal
unstructuredapproach.Geometrieswithclosetolerances,whereconfluentwakesandboundary
layersoccur,mayprovedifficult to discretizewitha hybridapproach,andthetaskof perform-
ing adaptivemeshingthroughouttheviscousandinviscidregionsof flow canbeconsiderably
morecomplex.

Thispaperdescribesa methodfor computingcompressibleturbulentviscousflowsabout
arbitrarytwo-dimensionalconfigurationsusingfully unstructuredmeshesand incorporating
adaptivemeshingtechniques.Thegenerationof mesheswith highly-stretchedtriangularele-
mentsin the boundary-layerand wakeregionsis accomplishedwith a methodbasedon a
modifiedDelaunaytriangulationtechnique[10]. The full Navier-Stokesequationsarediscre-
tizedandsolvedfor on thesemeshesusinganefficientfinite-elementsolverwhichconverges
rapidlyto steady-stateusinganunstructuredmultigridstrategy[11]. Turbulencemodelingis
achievedusingan inexpensivealgebraicmodelwhichhasbeendevisedspecificallyfor useon
unstructuredandadaptivemeshes[12].

2. MESH GENERATION

2.1. Initial Mesh Generation

The initial unstructured mesh is generated in three essentially independent stages. First, a

distribution of mesh points and associated stretching vectors are generated throughout the flow

field. These points are then joined together in a manner influenced by the local stretching

values to form a set on non-overlapping triangular elements which completely fill the domain.

The resulting mesh is then smoothed by slightly repositioning the mesh points according to an

elliptic smoothing operator discretized on the new mesh.

Although adaptive meshing techniques can be relied upon to increase the mesh resolution

in regions of strong flow gradients, a good initial mesh-point distribution is essential in order

to initially capture all the salient features of the flow, and to reduce the number of flow-

solution adaptivity cycles required to converge the accuracy of the solution process. This is
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especiallytrue in thecaseof high-Reynolds-numberviscousflows wherea highly stretched,
denselypackeddistributionis requiredto efficientlyresolvethethin shearlayers.Theinitial
distributionof meshpointsis generatedin a geometry-adaptivemanner.Pointsarepositioned
alongall flow-fieldboundariesandalongwakelinesin a mannerwhich is governedby the
local rateof changeof slopeof theboundarycurve,andthethickness(height)of theelements
to begeneratedat theboundary.Theeffectof thisdistributionmethodis to clusterpointsin
regionsof highboundarycurvatureandsharpcomers,wherelargeflow gradientsareexpected,
aswell astoreducethestretchingof themeshin suchregions.

A distributionof interiorpointsis thenconstructedby generatinga seriesof localhyper-
bolicstructuredmeshesfor eachboundarycurveor wakeline usingthepreviouslygenerated
boundary-pointdistributionasaninitial condition,andprescribinga normalspacingof points
asa functionof theReynoldsnumberof theflow to becomputed[13]. Theunionof all the
pointscontainedin thevariousoverlappinghyperbolicmeshesis thenusedasthebasisfor the
triangulation.A valueof stretchingisrequiredat eachmeshpoint,andthismaybecomputed
from thelocal ratioof thestreamwiseto normalpointspacingsin the localstructuredmeshes,
asshownin Figure1. Initial pointclusteringin wakeregionsis achievedby drawingfictitious
boundarieswhich approximatethe estimatedpositionsof the wakes.The positionof these
approximatewakelinesis obtainedby solvingthecorrespondinginviscidflow problemusing
aninexpensivepanel-methodsolution.t

A point-filteringoperation,basedon theaspectratiosof thestructuredlocalhyperbolic
meshcells,is alsoemployedto removeexcessivepointsin theregionsof inviscidflow. The
structured-meshcellaspect-ratios,asmeasuredby theratioof streamwiseto normalmeshspac-
ing,arelargenearthegeometrywallsandwakelines,anddecreasegraduallytowardsthefar-
field. In regionswheretheseaspectratiosbecomesmallerthanunity,thestreamwisepointdis-
tributionis coarsenedby removingselectedpoints,thusmaintaininga nearlyisotropicpoint
distributionin theinviscidregionsof flow. Thisfilteredsetof meshpointsis thentriangulated
usinga modifiedDelaunaytriangulationcriterion[10]. In its originalform, a Delaunaytri-
angulationof a givensetof pointstendsto producethe mostequiangulartrianglespossible,
andis thusnot well suitedfor thegenerationof highlystretchedtriangulations.TheDelaunay
criterionis thusmodifiedaccordingto thelocalstretchingvalues.Thelocalstretchingvalueis
usedto definea stretchedspace,withinwhichthelocalmesh-pointdistributionappearsmore
isotropic.TheDelaunaytriangulationof thepointsin thisstretchedspaceis thenconstructed.
This connectedsetof pointsis subsequentlymappedbackinto physicalspace,thusproducing
thedesiredstretchedtriangulation.Theactualconstructionof thestretchedtriangulationisper-
formedin a two-stageprocess.A regularDelaunaytriangulationof themeshpointsin physi-
cal spaceis initially constructedusingBowyer'salgorithm[14]. This initial triangulationis
convenientlyusedto smooththedistributionof stretchingsthroughouttheflow-fieldby provid-
ing the basisfor discretizinga smoothingoperatorwhich is thenappliedto the stretching
values.This Delaunaytriangulationis thentransformedintoa modified(stretched)Delaunay
triangulation,basedon thesmoothedlocalstretchingdistribution,by swappingthediagonals
accordingto the Delaunaymaximumminimum-anglecriterion[10] appliedin the stretched
space.Thiscriterionprovidesa basisfor decidingwhetheror notanedgeshouldbeswapped
by choosingtheconfigurationwhichmaximizesthesmallestof theanglesformedbetweenthe
edgeto beswappedandits immediateneighbors.

t Supplied by L. Wigton, The Boeing Company.
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A regular Delaunay triangulation of a set of points produces a smoothly varying mesh

provided the mesh points are initially distributed evenly and isotropically. Similarly, a

stretched or modified Delaunay triangulation of a set of points will result in a smoothly varying

stretched mesh provided the mesh-point and the stretching distributions are closely coupled and

provided the stretching distribution varies slowly with respect to the local mesh element size.

The geometry-adaptive mesh-point distribution and the point filtering operation previously

described, have thus been designed to ensure that these criteria are satisfied.

Finally, the stretched triangulation can be smoothed in a postprocessing operation by

slightly repositioning the points according to a smoothing operator discretized on the mesh.

Once the points have been displaced, the mesh may no longer obey the modified Delaunay cri-

teflon, thus the edges may be swapped to recover this property. Multiple smoothing and

edge-swapping passes may then be employed to further smooth the mesh.

2.2. Adaptive Meshing Procedure

Once the initial stretched unstructured mesh has been generated and the flow-field has

been solved for on this mesh, a new adaptively refined mesh may be constructed by adding

new points to the initial mesh in regions where large flow gradients or discretization errors are

detected, and locally restructuring the mesh. In this work, the refinement criterion is based on

the undivided difference of pressure and Mach number. Pressure gradients provide a good

indication of inviscid flow phenomena, such as shocks and expansions, while Mach number

variations can be used to identify viscous phenomena such as boundary layers and wakes.

Although the mesh-point distribution can be refined in the adaptation process, the stretching

distribution is held fixed. Thus, in order to maintain a close coupling between the final mesh-

point distribution and the stretching distribution, an isotropic refinement strategy must be

adopted. The variations of pressure and Mach number within each triangular element of the

mesh are examined. When these are larger than some fraction of the average variations of

pressure and Mach number over all cells of the mesh, three new mesh points are created, one

at the midpoint of each of the three edges of the cell. Each new mesh point is assigned a

stretching value taken as the average of the stretchings of the two points at either end of the

generating mesh edge. The new points are then inserted into the existing mesh by locally res-

tructuring the mesh according to Bowyer's algorithm in the stretched space [14]. For each new

mesh point, the triangles whose circumcircles are intersected by this new point are located. The

union of all intersected triangles forms a convex polygonal region, which contains the new

point. The existing structure in this region is removed, and a new structure is constructed by

joining the new point to all the vertices of this polygonal region, as shown in Figure 2. By

simultaneously refining all three sides of a mesh element, and by assigning average stretching

values to the new points, directional biasing of the refinement process is avoided, and a smooth

distribution of stretching is maintained. The use of Bowyer's algorithm in the stretched space,

which provides an effective method for constructing a stretched Delaunay triangulation through

sequential point insertion and retriangulation, constitutes an ideal adaptive mesh enrichment

strategy, and obviates the need for global mesh regeneration.

When new boundary points are inlroduced, they must be repositioned onto the spline

definition of the geometry boundary. For curved surfaces, this will not coincide with the mid-

point of the original boundary mesh edge. For highly su-etched meshes, the distance between

these two locations may in fact be much larger than the average width of the elements in the

vicinity of the boundary, and a restructuring of the entire region is required, as shown in Fig-

ure 3. This is accomplished by drawing the line joining the mid-point of the boundary edge
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beingrefinedto thespline-displacedpositionof thisnewboundarypoint.Theunionof all tri-
angularmeshelementsintersectedby this line, as well aselementswhosecircumcirclesare
intersectedby the splinedisplacedboundarypoint, aretaggedfor reconstruction.This entire
regionis thenrestructured,asperthestandardBowyeralgorithm,i.e.removingall meshedges
in thisregion,andforminga newstructureby joiningup thenewmeshpointto all thevertices
of thepolygonalregion.

3. FLOW SOLUTION

In non-dimensionalconservativevectorform,theNavier-Stokesequationsread
0w 1
O--_-+ V.Fc = Re----_V.Fv (1)

where Re. denotes the overall flow Reynolds number, and w represents the conserved variables

P

pu
w = pv (2)

pE

p being the fluid density, u and v the cartesian velocity components, and E the internal energy.

Fc represents the convective flux vector, the components of which are algebraic functions of
the conserved variables and the pressure, which itself can be related to the conserved variables

through the perfect gas relation. Fv denotes the viscous flux vector, the components of which

are functions of the first derivatives of the conserved variables. Equation (1) represents a set

of partial differential equations which must be discretized in space in order to obtain a set of

coupled ordinary differential equations, which can then be integrated in time to obtain the

steady-state solution. Space discretization is performed using a Galerkin finite-element type for-

mulation. Multiplying equation (1) by a test function 0, and integrating over physical space
yields

--_tf_w dxdy + f_41V.Fc dxdy 1 f_: Re---_ ,V.F, dxdy (3)

Integrating the flux integrals by parts, and neglecting boundary terms gives

ff-_f_,w dxdy =I_Fc .V, dxdy Re_l _F_ .V, dxdy (4)

In order to evaluate the flux balance equations at a vertex P, _ is taken as a piecewise linear

function which has the value 1 at node P, and vanishes at all other vertices. Therefore, the

integrals in the above equation are non-zero only over triangles which contain the vertex P,

thus defining the domain of influence of node P, as shown in Figure 4. To evaluate the above

integrals, we make use of the fact that Cx and ¢y are constant over a iriangle, and evaluate spa-

tial derivatives of ¢ and w over a triangle using vertex values, by Green's contour integral

theorem. The convective fluxes F_ are taken as piecewise linear functions in space, and the

viscous fluxes F_ are piecewise constant over each triangle, since they are formed from first

derivatives in the flow variables. Evaluating the flux integrals with these assumptions, one
obtains

_f_$w dxdy = _ F:+F: 1 F"-_-_.AL_ _ " A--_--. LAB (5)¢=1 Re. 4'--I

where the summations are over all triangles in the domain of influence, as shown in Figure 4.

A_ represents the directed (normal) edge length of the face of each triangle on the outer boun-
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daryof thedomain,F_ F_n are the convective fluxes at the two vertices at either end of this

edge, and F_"is the viscous flux in triangle e, e being a triangle in the domain of influence of

_. If the integral on the left hand side of equation (5) is evaluated in the same manner, the time

derivatives become coupled in space. Since we are not interested in the time-accuracy of the

scheme, but only in the final steady-state solution, we employ the concept of a lumped mass

matrix. This is equivalent to assuming w to be constant over the domain of influence while

integrating the left hand side. Hence, we obtain

_.,,. F_ + l_ 1 3
f_p_ = 2 .ALas ]_ _ (F: .AL_) (6)

t=l T Re. t=l

where the factor of 1/3 is introduced by the integration of ¢_ over the domain, and f_p

represents the surface area of the domain of influence of P. For the convective fluxes, this

procedure is equivalent to the vertex finite-volume formulation described in [4,5]. For a

smoothly varying regular triangulation, the above formulation is second-order accurate.

Additional artificial dissipation terms are required to ensure stability and to capture

shocks without producing numerical oscillations. This is necessary for both inviscid and

viscous flow computations, since in the later case, large regions of the flow field behave essen-

tially inviscidly and the physical viscosity is not sufficient to guarantee numerical stability for

the type of mesh spacings typically employed. Artificial dissipation terms are thus constructed

as a blend of a Laplacian and a biharmonic operator in the conserved flow variables. The

Laplacian term represents a strong formally first-order accurate dissipation which is turned on

only in the vicinity of a shock, and the biharmonic term represents a weaker second-order

accurate dissipation which is employed in regions of smooth flow [5,11]. The spatially discre-

tized equations are integrated in time to obtain the steady-state solution using a five-stage

time-stepping scheme, where the convective terms are evaluated at each stage within a time

step, and the dissipative terms (both physical and artificial) are only evaluated at the first, third,

and fifth stages. This particular scheme has been designed to maintain stability in regions

where the flow is dominated by viscous effects, and to rapidly dampen out high-frequency

error components, which is an essential feature for a scheme intended to drive a multigrid algo-

rithm. Convergence is accelerated by making use of local time-stepping, implicit residual

averaging, and an unstructured multigrid algorithm [11].

The idea of a multigrid strategy is to accelerate the convergence to steady-state of a fine

grid solution through corrections computed on coarser grids. An initial time step is performed

on the fine grid, and the flow variables and residuals are then transferred to the coarse grid. A

correction equation is constructed on the coarse grid by adding a forcing function to the origi-

nal discretized equations. This forcing function is formed by taking the difference between the

transferred residuals and the residuals of the transferred variables, thus ensuring that the evolu-

tion of the coarse grid equations is driven by the fine grid residuals. Hence, when the fine grid

residuals vanish, the coarse grid equations are identically satisfied, and generate zero correc-

tions. After transferring values down from the fine grid, a time step is performed on the coarse

grid, and the new values are transferred down to the next coarser grid. When the coarsest grid

is reached, the computed corrections are successively interpolated back up to the finest grid,

and the entire cycle is repeated. In the context of unstructured meshes, a sequence of coarse

and fine meshes is best constructed by generating the individual meshes independently from

one another (as opposed to subdividing a coarse mesh). Thus, in general, the coarse and fine

meshes of a given sequence do not have any common mesh points or nested elements. Thus,

the patterns for transferring the variables, residuals, and corrections back and forth between the
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variousmeshesof the sequence must be determined in a preprocessing operation, where an

efficient tree-search algorithm is employed [5].

Such a multigrid algorithm may be combined with an adaptive meshing strategy in a

natural manner. First, a sequence of globally generated meshes is constructed, and multigrid

time-stepping is performed on this sequence until a satisfactorily converged solution is

obtained. At this point, a new adaptively refined mesh is generated, and the transfer patterns

for transferring variables from the previous mesh to the new mesh are determined. The flow

variables are then transferred to this new mesh, providing a starting solution, and multigrid

time-stepping is resumed on this new sequence which now contains an additional fine mesh.

The process may be repeated, as shown in Figure 5, each time adding a new finer mesh to the

sequence, until a converged solution of the desired accuracy is obtained.

4. TURBULENCE MODELING

4.1. General Procedure

The most widespread turbulence models in use currently are either of the multiple field-

equation type, or of the algebraic type. While field-equation models (such as the K-e model)

can be discretized and solved for on unstructured meshes in a straight-forward manner, the

solution of additional field-equations can be considerably expensive, especially in near-wall

regions where the equations may become very stiff numerically. Algebraic models, on the

other hand, are relatively inexpensive to compute, and have demonstrated generally superior

accuracy and reliability for limited classes of problems, such as high-Reynolds-number attached

flows over streamlined bodies. However, such models typically require information concerning

the distance of each mesh point from the nearest wall. Turbulence length scales, which are

related to the local boundary-layer or wake thickness, are determined by scanning the appropri-

ate flow values along specified streamwise stations. In the context of unstructured meshes,

mesh points and thus flow variables do not naturally occur at regular streamwise locations.

Thus, lines normal to the walls and viscous layers must be created, and flow variables interpo-

lated onto these lines in order that turbulence length scales may be determined. This type of

approach has previously been implemented for supersonic ramp geometries by Rostand [15].

However, in the present work, more complex geometries must be accommodated. A more

sophisticated manner of generating normal mesh stations can be devised using structured

hyperbolic mesh generation techniques [13]. Thus, a distribution of normal mesh lines which

do not cross-over each other, and containing a smoothly varying normal distribution of points,

can be obtained by generating a structured hyperbolic mesh about each geometry component,

based on the boundary-point distribution of the global unstructured mesh on each component

[12]. These normal mesh lines are terminated if they intersect a neighboring geometry com-

ponent, thus ensuring that turbulence quantities in any given region of the flow-field are only

dependent on the viscous layers and walls which are directly visible from that location (c.f.

Figures 7 and 12). At each time-step in the flow solution phase, flow variables are interpolated

onto the background turbulence mesh stations, and the Baldwin-Lomax [16] algebraic model is

employed to compute eddy viscosity values along these stations. The standard Baldwin-Lomax

model must be modified slightly, in order to enable the treatment of flows with multiple

boundary-layers and wakes. Thus, the search for the maximum moment of vorticity, which is

usually employed to determine a turbulence length scale, is limited to the region between the

wall (or wake centerline), and the first point of vanishing vorticity off the wall (or wake center-

line). Since a change in sign of the vorticity occurs in the region between two confluent shear
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layers, turbulence length scales associated with vorticity fluctuations due to neighboring shear

layers are ignored in this manner. The eddy viscosities are then interpolated back onto the

unstructured mesh for subsequent use in the flow solver. In regions where multiple back-

ground turbulence meshes overlap, the multiple eddy viscosity values (one from each mesh)

interpolated back to the unstructured mesh are weighted by a factor proportional to the inverse

of the distance from the corresponding wall, thus producing a smooth distribution of eddy

viscosity throughout the flow-field. How variables can be repeatedly interpolated back and

forth between the background turbulence mesh stations and the global unstructured mesh by

computing and storing the interpolation weights and addresses in a preprocessing operation

prior to the flow solution phase. This is accomplished by first triangulating the point distribu-

tion of the local background turbulence meshes, and then making use of the same efficient

search routines employed in the unstructured multigrid transfer process.

4.2. Adaptive Meshing Procedure

When an adaptive meshing strategy is employed, the background turbulence meshes must

be adapted in a manner analogous to the refinement of the global unstructured mesh. A

refinement field variable is thus constructed, which is assigned the value 1.0 in regions where
the unstructured mesh is refined, and 0.0 in the remainder of the flow field. This variable is

then interpolated onto the background turbulence meshes and used to determine the regions

which require refinement. Since these background meshes have previously been triangulated

for interpolation purposes, they may be refined by inserting new points and restructuring

locally using Bowyer's Delaunay triangulation algorithm [141 as described previously. How-

ever, these new points must be added in a manner which preserves the original structure (that

of normal mesh stations) of the background meshes. Hence, only new points along existing

mesh stations are permitted, and when a new boundary point is inserted, an entire new tur-

bulence mesh station extending up to the outer boundary of the background mesh is created
[12].

After each adaptation process, the transfer patterns for interpolation between the newly

refined global unstructured mesh and background meshes must be recomputed. In the context

of the multigrid strategy, the turbulence model is only executed on the finest grid of the

sequence. The computed eddy viscosity values are then interpolated up to the coarser unstruc-

tured meshes where they are employed in the multigfid correction equations. The whole pro-

cess is very efficient, and in general, the turbulence model is found to require less than 10% of

the total time required within a single multigrid cycle. Memory requirements are, however,
increased by close to 50% since extra variables and transfer coefficients must be stored for the

background turbulence mesh stations.

5. RESULTS

5.1. Single Airfoil Geometry

As an initial test case, the turbulent flow over an RAE 2822 airfoil has been computed.

The freestream Mach number is 0.729, the Reynolds number is 6.5 million, the corrected

incidence is 2.31 degrees, and transition is fixed at 0.03 chords. This constitutes a well docu-

mented test case (Case 6) for turbulent transonic flow [17], which can be used to validate the

present solver. The unstructured mesh employed for this case is depicted in Figure 6. This

mesh contains 13,751 points of which 210 are on the airfoil surface. The average normal spac-

ings of the triangles on the airfoil surface is 0.00001 chords, resulting in cell aspect ratios of
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the order of 1000:1 near the wall. The background turbulence mesh stations employed for

computing the algebraic turbulence model, which contain a total of 13,372 points, are depicted

in Figure 7. The computed surface pressure distribution and skin friction distribution are

displayed in Figures 8 and 9, respectively, where they are compared with experimental data

from [17]. Both quantities are seen to compare favorably with the experimental results, and the

computed lift coefficient of 0.7403 is well within the range reported in previously published

computational solutions, using structured meshes [18]. A total of five meshes were employed

in the multigrid sequence, with the coarsest mesh containing only 98 points. The convergence

rate for this case, as measured by the decrease in the RMS average of the density residuals

throughout the flow-field, versus the number of multigrid cycles, is depicted in Figure I0. An

average residual reduction of 0.955 per multigrid cycle is achieved on the finest grid, resulting

in a decrease of the residuals by 4 orders of magnitude over 200 cycles. Furthermore, the lift

and drag coefficients were converged to four significant figures within 90 cycles. Since each

multigrid cycle requires roughly 1.4 CPU seconds on a single processor of the CRAY-YMP

computer, engineering solutions could thus be obtained in approximately 2 minutes for this
case.

5.2. Two-Element Airfoil Geometry

The next test case consists of a main airfoil with a leading edge slat which has been the

subject of extensive wind-tunnel tests, as part of a program aimed at determining the

effectiveness of slats as maneuvering devices for fighter aircraft [19]. The test conditions con-

sist of a freestream Mach number of 0.5, a chord Reynolds number of 4.5 million, and a

corrected incidence of 7.5 degrees. At these conditions, the flow becomes supercritical, and a

small shock is formed on the upper surface of the slat. :fhe adapted mesh used to compute

this flow is depicted in Figure 11. The mesh contains a total of 35,885 points, of which 418

are on the surface of the main airfoil, and 421 on the surface of the slat. The minimum nor-

mal spacing at the wall is 0.00001 chords, and cells of aspect ratios up to 1000:1 are observed.

A total of 7 meshes were employed in the multigrid sequence with the last 3 meshes generated

adaptively. Figure 12 illustrates the adaptively generated turbulence mesh stations employed by

the algebraic turbulence model for this case. The computed Mach contours in the flow field

are depicted in Figure 13 where a crisp resolution of the small localized shock provided by the

adaptive meshing technique is observed. A good correlation between the computed and experi-

mental surface pressure coefficients is displayed in Figure 14. This method predicts a small

zone of separated flow behind the shock which has not been detected in previous calculations

[19], while also providing a more accurate prediction of shock location and subsequent pres-

sure recovery. The solution of this case required 15 minutes on a single processor of a

CRAY-YMP, during which the fine grid residuals were reduced by 3 orders of magnitude over

200 multigrid cycles, as shown in the convergence history plot of Figure 15.

5.3. Four-Element-Airfoil Geometry

The final test case consists of a four-element airfoil configuration. This represents a truly

complex geometry involving regions with sharp corners which is not easily amenable to struc-

tured mesh techniques and is of considerable practical interest as it relates to the design of

high-lift devices for commercial aircraft. A multigrid sequence of 6 meshes was employed to

compute the flow over this configuration with the last 2 meshes generated adaptively. The

finest mesh of the sequence, which contains a total of 48,691 points, is depicted in Figure 16.

The mesh contains 243 points on the main airfoil, 327 points on the leading edge slat with 208
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and 247 points located on the vane and flap respectively. The height of the smallest cells at

the wall is of the order of 0.00002 chords for each airfoil element and cell aspect ratios up to

500:1 are observed. The computed Mach contours for this case are depicted in Figure 17. The

freestream Mach number is 0.1995, the chord Reynolds number is 1.187 million, and the

corrected incidence is 16.02 degrees. At these conditions, the flow remains entirely subcritical.

Compressibility effects are nevertheless important due to the large suction peaks generated

about each airfoil. For example, in the suction peak on the upper surface of the leading-edge

slat, the local Mach number achieves a value of 0.77. The computed surface pressure

coefficients are compared with experimental wind tunnel data t in Figure 18, and good overall

agreement, including the prediction of the height of the suction peaks, is observed. This case

provides a good illustration of the importance of adaptive meshing in practical aerodynamic

calculations. Adequate resolution of the strong suction peak on the upper surface of the slat can

only be achieved with a very fine mesh resolution in this region. Failure to adequately capture

this large suction peak results in the generation of numerical entropy which is then convected

downstream, thus contaminating the solution in the downstream regions, and degenerating the

global accuracy of the solution. Because these suction peaks are very localized, they are

efficiently resolved with adaptive techniques. In order to obtain a similar resolution using glo-

bal mesh refinement, of the order of 200,000 mesh points would be required, greatly increasing

the cost of the computation. The convergence history for this case, as measured by the density

residuals and the total lift coefficient versus the number of multigrid cycles, is depicted in Fig-

ure 19. A total of 400 multigrid cycles were executed, which required roughly 35 minutes of

single processor CRAY-YMP time, and 14 Mwords of memory.

6. CONCLUSIONS

A method for efficiently computing turbulent compressible flows over complex two-

dimensional configurations has been presented. By employing fully unstructured meshes

throughout the entire flow field, arbitrary geometries can be handled and adaptive meshing

techniques may be extensively exploited. The method is efficient in that engineering solutions

may generally be obtained in less than 100 multigrid cycles, and the turbulence model requires

less than 10% of the total time required to compute a solution. Unstructured mesh algorithms

incur substantial overheads due to the random nature of their data-sets and generally run up to

three times slower than their structured counterparts on present day supercomputers due to the

indirect addressing and gather-scatter operations which must be employed. However, adaptive

meshing techniques enable the accurate resolution of complex flow-fields with a relatively

small number of points easily outweighing the penalties incurred by the use of random data-

sets. In the future, an adaptive meshing technique capable of modifying the local mesh stretch-

ing, as well as the mesh-point distribution, should be pursued. Further turbulence modeling

research is also required, either refining the current algebraic model or implementing an alter-

nate field equation model for cases with large regions of separated flows.
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Figure 1

Overlapping Structured C-Meshes for Multi-Element Airfoil Geometry

Providing Initial Definition of Mesh-Point Distribution and

Local Stretching Factors
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a)
Insertion of New Point

b)
Determination of Intersected Triangles

and Removal of Mesh Structure in this Region

¢)
Local Restructuring of Mesh in Affected Region

Figure 2

Illustration of Bowyer's Algorithm for Delaunay Triangulation
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Figure 3

I/lustTat/on of Adaptive Boundary Point Insertion and Local Mesh Restructuring
in Regions of High Mesh Stretching and High Boundary Curvature
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Figure 4

Domain of Influence of Finite-Element Basis Function and Equivalent
Finite-Volume Control Volume
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Figure 5
Full Multigrid Algorithm Employed in Conjunction with Adaptive Meshing Strategy
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Figure 6

Fully Unstructured Mesh with High Slretching Employed for Computing
Turbulent Flow Past an RAE 2822 Airfoil (Number of Points = 13751)
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Figure 7
Turbulence Stations Employed for Computing Flow Past an RAE 2822 Airfoil

(Total Number of Points = 13372)
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Figure 8

Comparison of Computed Surface Pressure with Experimental Measurements for Flow
over an RAE 2822 Airfoil (Mach = 0.729, Re=6.5 million, Incidence = 2.31 degrees)
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Comparison of Computed Skin Friction with Experimental Measurements for Flow

over an RAE 2822 Airfoil (Mach = 0.729, R_6.5 million, Incidence = 2.31 degrees)
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RMS average of the Density Residuals versus the Number of Multigrid Cycles
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Figure 11

Adaptively Generated Unstructured Mesh about Two-Element Airfoil
Number of Nodes = 35,885
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Figure 12

Illustration of Turbulence Mesh Stations Employed in Algebraic Model
Total Number of Points = 43,566
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